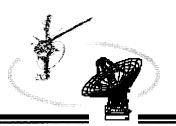

Converging Voice and Data over Mission-Critical Networks

Richard W. Markley Gerald G. Humphrey Joseph Liu

NASA/Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive M/S 303-210 Pasadena, CA 91109 richard.w.markley@jpl.nasa.gov



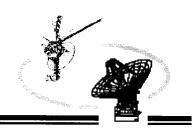
Background

- JPL
- Operational voice is used by Deep Space Mission System (DSMS)
 mission operations personnel to communicate verbal commands, status,
 marking conditions, and safety instructions.
- During a typical mission track, sequence operations personnel use the voice capability to communicate valuable mission parameters including spacecraft downlink state and health.
- Real-time mission tracking parameters are also communicated between the Project Operations Centers (POCs), and the antenna facilities.
- The traditional DSMS voice architecture includes a central Raytheon Multi-Conference Digital Switch (MDS-1) to connect distributed users.
 - Dedicated circuits
 - Analog signals to 4-wire-interfaced end instruments.

Voice over IP (VoIP)

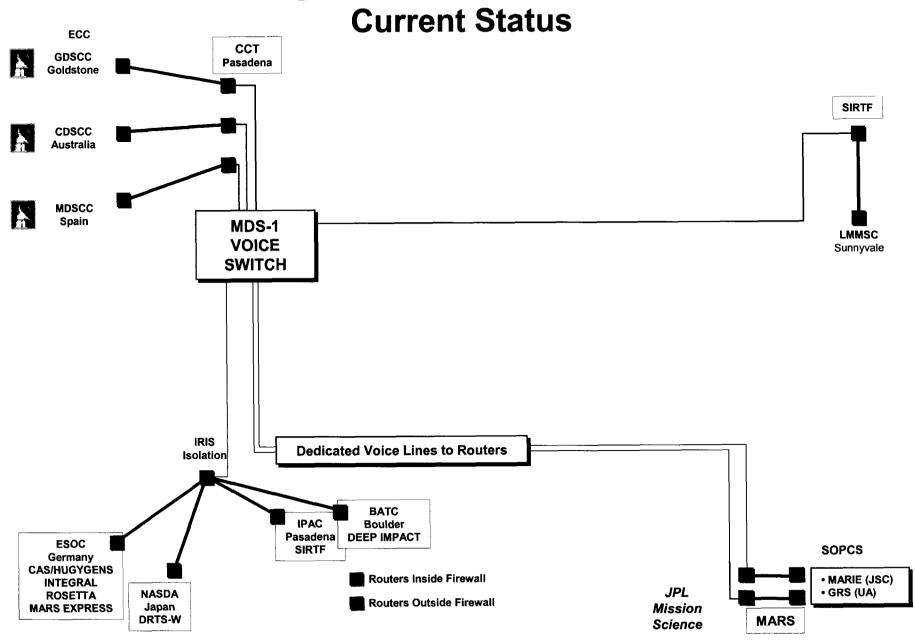
71---

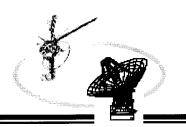
- There is a private DSMS IP data network capable of packet prioritization.
- Voice can be encoded into Internet Protocol (IP) networks based on ITU H.323-series standards.
- Enables voice to be packetized into standard IP format to be carried on the DSMS IP-based ground network.
- VolP traffic stream of much smaller bandwidth, e.g. 8 kbps vs. normal 64 kbps per channel.
- In addition, experience has shown during a day, voice only uses bandwidth 3-6% of the time.


Quality of Service (QOS)

JPL

- Voice has inherent quality demands and hence requires preferential treatment traveling through data network.
- A number of QoS techniques are deployed to ensure co-existence of voice and data on the same IP network.
- Prioritized with highest priority over the DSMS routers for highest quality.


Implementation


JPL

- Initial operational voice pilot was implemented to support Space Infrared Telescope Facility (SIRTF) development between Pasadena, CA, and Sunnyvale, CA.
 - Across a T1 dedicated circuit in 1999.
 - The VoIP was allocated 12 kbps of bandwidth, with the balance for TCP/IP data.
- Based on this success, an operational system was installed to support two Project Operation Centers (POCs) for Mars Odyssey, at Arizona State University and University of Arizona.
- Additional installations followed to support Cassini's Huygens Probe
 Operations Center (HPOC) in the European Space Operations Center in
 Darmstadt, Germany, and the Deep Space Communications Complex
 (DSCCs) in Goldstone CA.
- Plans are to transition to VOIP in the DSCCs in Canberra, Australia, and Madrid, Spain.

Ops Voice over IP

Results

JPL

- The architecture has proven to be very robust and has resulted in significant cost savings.
 - Eliminates separate voice circuits
 - Increase robustness because of redundancy built into the data network.
- Limited to WAN communications until the LAN can support priorities required for quality VOIP.

Next Steps

- Transition the LANs at the DSCCs to a type able to support VOIP over the LANs.
- Deploy appropriate end instruments at DSCCs (with Ethernet interfaces rather than 4-wire interfaces). Instruments under development.
- Deploy an IP-based central switch.